AUTOMATED PIPELINES FOR ENHANCED ENERGY DATA QUALITY: ANOMALY DETECTION, DATA IMPUTATION, AND GENERATIVE MODELING
Ph.D
Saved in:
主要作者: | FU CHUN |
---|---|
其他作者: | THE BUILT ENVIRONMENT |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://scholarbank.nus.edu.sg/handle/10635/249505 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
EVALUATION AND COMPARISON OF DATA IMPUTATION METHODS ON ACXIOM DATASET
由: DENG YUAN
出版: (2021) -
SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods
由: Roth, Jonathan, et al.
出版: (2021) -
Mining electrical meter data to predict principal building use, performance class, and operations strategy for hundreds of non-residential buildings
由: Miller, Clayton, et al.
出版: (2021) -
Missing data imputation for solar yield prediction using temporal multi-modal variational auto-encoder
由: SHEN, Meng, et al.
出版: (2021) -
Development of Data Imputation Methods for the Multiple Linear Regression
由: Thidarat Thongsri
出版: (2023)