Some normal approximations for renewal function of large Weibull shape parameter

10.1081/SAC-120013107

Saved in:
Bibliographic Details
Main Authors: Cui, L., Xie, M.
Other Authors: INDUSTRIAL & SYSTEMS ENGINEERING
Format: Article
Published: 2014
Subjects:
Online Access:http://scholarbank.nus.edu.sg/handle/10635/63331
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-63331
record_format dspace
spelling sg-nus-scholar.10635-633312024-11-13T15:20:03Z Some normal approximations for renewal function of large Weibull shape parameter Cui, L. Xie, M. INDUSTRIAL & SYSTEMS ENGINEERING Normal approximation Renewal function Series truncation approximation Shape parameter Weibull distribution 10.1081/SAC-120013107 Communications in Statistics Part B: Simulation and Computation 32 1 1-16 CSSCD 2014-06-17T07:02:49Z 2014-06-17T07:02:49Z 2003-02 Article Cui, L., Xie, M. (2003-02). Some normal approximations for renewal function of large Weibull shape parameter. Communications in Statistics Part B: Simulation and Computation 32 (1) : 1-16. ScholarBank@NUS Repository. https://doi.org/10.1081/SAC-120013107 03610918 http://scholarbank.nus.edu.sg/handle/10635/63331 000181843900001 Scopus
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic Normal approximation
Renewal function
Series truncation approximation
Shape parameter
Weibull distribution
spellingShingle Normal approximation
Renewal function
Series truncation approximation
Shape parameter
Weibull distribution
Cui, L.
Xie, M.
Some normal approximations for renewal function of large Weibull shape parameter
description 10.1081/SAC-120013107
author2 INDUSTRIAL & SYSTEMS ENGINEERING
author_facet INDUSTRIAL & SYSTEMS ENGINEERING
Cui, L.
Xie, M.
format Article
author Cui, L.
Xie, M.
author_sort Cui, L.
title Some normal approximations for renewal function of large Weibull shape parameter
title_short Some normal approximations for renewal function of large Weibull shape parameter
title_full Some normal approximations for renewal function of large Weibull shape parameter
title_fullStr Some normal approximations for renewal function of large Weibull shape parameter
title_full_unstemmed Some normal approximations for renewal function of large Weibull shape parameter
title_sort some normal approximations for renewal function of large weibull shape parameter
publishDate 2014
url http://scholarbank.nus.edu.sg/handle/10635/63331
_version_ 1821183868943728640