Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set
Journal of Computational Chemistry
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2014
|
Subjects: | |
Online Access: | http://scholarbank.nus.edu.sg/handle/10635/66778 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
id |
sg-nus-scholar.10635-66778 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-667782023-08-29T09:49:24Z Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set Widjaja, E. Garland, M. CHEMICAL & ENVIRONMENTAL ENGINEERING Entropy minimization Global optimization Pure component spectral reconstruction Simulated annealing Singular value decomposition Journal of Computational Chemistry 23 9 911-919 JCCHD 2014-06-17T08:34:19Z 2014-06-17T08:34:19Z 2002-07-15 Article Widjaja, E., Garland, M. (2002-07-15). Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set. Journal of Computational Chemistry 23 (9) : 911-919. ScholarBank@NUS Repository. 01928651 http://scholarbank.nus.edu.sg/handle/10635/66778 000175774100006 Scopus |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
topic |
Entropy minimization Global optimization Pure component spectral reconstruction Simulated annealing Singular value decomposition |
spellingShingle |
Entropy minimization Global optimization Pure component spectral reconstruction Simulated annealing Singular value decomposition Widjaja, E. Garland, M. Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set |
description |
Journal of Computational Chemistry |
author2 |
CHEMICAL & ENVIRONMENTAL ENGINEERING |
author_facet |
CHEMICAL & ENVIRONMENTAL ENGINEERING Widjaja, E. Garland, M. |
format |
Article |
author |
Widjaja, E. Garland, M. |
author_sort |
Widjaja, E. |
title |
Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set |
title_short |
Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set |
title_full |
Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set |
title_fullStr |
Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set |
title_full_unstemmed |
Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set |
title_sort |
pure component spectral reconstruction from mixture data using svd, global entropy minimization, and simulated annealing. numerical investigations of admissible objective functions using a synthetic 7-species data set |
publishDate |
2014 |
url |
http://scholarbank.nus.edu.sg/handle/10635/66778 |
_version_ |
1776257015649140736 |