QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization

10.1177/0037549713485894

Saved in:
Bibliographic Details
Main Authors: Tao, F., Laili, Y.J., Zhang, L., Zhang, Z.H., Nee, A.Y.C.
Other Authors: MECHANICAL ENGINEERING
Format: Article
Published: 2014
Subjects:
Online Access:http://scholarbank.nus.edu.sg/handle/10635/85586
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-85586
record_format dspace
spelling sg-nus-scholar.10635-855862024-11-10T21:19:50Z QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization Tao, F. Laili, Y.J. Zhang, L. Zhang, Z.H. Nee, A.Y.C. MECHANICAL ENGINEERING evolutionary algorithms multi-objective combinatorial optimization (MOCO) quantum agent (QAgent) Quantum bit quantum multi-agent evolutionary algorithm (QMAEA) service composition optimal-selection (SCOS) service-oriented distributed simulation system (SoDSS) 10.1177/0037549713485894 Simulation 90 2 182-204 SIMUA 2014-10-07T09:09:45Z 2014-10-07T09:09:45Z 2014-02 Article Tao, F., Laili, Y.J., Zhang, L., Zhang, Z.H., Nee, A.Y.C. (2014-02). QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization. Simulation 90 (2) : 182-204. ScholarBank@NUS Repository. https://doi.org/10.1177/0037549713485894 00375497 http://scholarbank.nus.edu.sg/handle/10635/85586 000337570300006 Scopus
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic evolutionary algorithms
multi-objective combinatorial optimization (MOCO)
quantum agent (QAgent)
Quantum bit
quantum multi-agent evolutionary algorithm (QMAEA)
service composition optimal-selection (SCOS)
service-oriented distributed simulation system (SoDSS)
spellingShingle evolutionary algorithms
multi-objective combinatorial optimization (MOCO)
quantum agent (QAgent)
Quantum bit
quantum multi-agent evolutionary algorithm (QMAEA)
service composition optimal-selection (SCOS)
service-oriented distributed simulation system (SoDSS)
Tao, F.
Laili, Y.J.
Zhang, L.
Zhang, Z.H.
Nee, A.Y.C.
QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization
description 10.1177/0037549713485894
author2 MECHANICAL ENGINEERING
author_facet MECHANICAL ENGINEERING
Tao, F.
Laili, Y.J.
Zhang, L.
Zhang, Z.H.
Nee, A.Y.C.
format Article
author Tao, F.
Laili, Y.J.
Zhang, L.
Zhang, Z.H.
Nee, A.Y.C.
author_sort Tao, F.
title QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization
title_short QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization
title_full QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization
title_fullStr QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization
title_full_unstemmed QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization
title_sort qmaea: a quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization
publishDate 2014
url http://scholarbank.nus.edu.sg/handle/10635/85586
_version_ 1821224405870575616