Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city
Designing cities for thermal comfort is an important priority in a warming and urbanizing world. As temperatures in cities continue to break extreme heat records, it is necessary to develop and test new approaches capable of tracking human thermal sensations influenced by microclimate conditions, co...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2022
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/cis_research/15 https://ink.library.smu.edu.sg/context/cis_research/article/1014/viewcontent/SSRN_id4009691.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.cis_research-1014 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.cis_research-10142022-10-21T03:12:44Z Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city DZYUBAN, Yuliya HONDULA, David M. VANOS, Jennifer K. MIDELL, Ariane COSEO, Paul J. KURAS, Evan R. REDMAN, Charles L. Designing cities for thermal comfort is an important priority in a warming and urbanizing world. As temperatures in cities continue to break extreme heat records, it is necessary to develop and test new approaches capable of tracking human thermal sensations influenced by microclimate conditions, complex urban geometries, and individual charac-teristics in dynamic settings. Thermal walks are a promising novel research method to address this gap. During a ther-mal walk in Phoenix, Arizona, USA, we examined relationships between the built environment, microclimate, and subjective thermal judgments across a downtown city neighborhood slated for redevelopment. Subjects equipped with GPS devices participated in a 1-hour walk on a hot sunny day and recorded their experience in a field guide. Mi-croclimate measurements were simultaneously collected using the mobile human-biometeorological instrument plat-form MaRTy. Results revealed significant differences in physiologically equivalent temperature (PET) and modified physiologically equivalent temperature (mPET) and between street segments with more than 18 degrees C (25 degrees C mPET) be-tween the maximum and minimum values. Wider range of mPET values reflected the inclusion of individual level data into the model. Streets with higher sky view factor (SVF) and east-west orientation showed a higher PET and mPET overall. Furthermore, we showed evidence of thermal alliesthesia, the pleasure resulting from slight changes in micro -climate conditions. Participants' sense of pleasure was related to the mean PET of the segment they just walked, with linear regression explaining over 60% of the variability. We also showed that estimated percent shade was significantly correlated with SVF, PET, mPET, and pleasure, indicating that participants could sense minor changes in microclimate and perceived shade as pleasant. Although generalization of results is limited by a low sample size, findings of this study improve the understanding of dynamic thermal comfort in complex urban environments and highlight the value of thermal walks as a robust research method. 2022-08-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/cis_research/15 info:doi/10.1016/j.scitotenv.2022.155294 https://ink.library.smu.edu.sg/context/cis_research/article/1014/viewcontent/SSRN_id4009691.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection College of Integrative Studies eng Institutional Knowledge at Singapore Management University Outdoor thermal comfort Alliesthesia Urban design Extreme heat mitigation Environmental Design Urban Studies and Planning |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Outdoor thermal comfort Alliesthesia Urban design Extreme heat mitigation Environmental Design Urban Studies and Planning |
spellingShingle |
Outdoor thermal comfort Alliesthesia Urban design Extreme heat mitigation Environmental Design Urban Studies and Planning DZYUBAN, Yuliya HONDULA, David M. VANOS, Jennifer K. MIDELL, Ariane COSEO, Paul J. KURAS, Evan R. REDMAN, Charles L. Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city |
description |
Designing cities for thermal comfort is an important priority in a warming and urbanizing world. As temperatures in cities continue to break extreme heat records, it is necessary to develop and test new approaches capable of tracking human thermal sensations influenced by microclimate conditions, complex urban geometries, and individual charac-teristics in dynamic settings. Thermal walks are a promising novel research method to address this gap. During a ther-mal walk in Phoenix, Arizona, USA, we examined relationships between the built environment, microclimate, and subjective thermal judgments across a downtown city neighborhood slated for redevelopment. Subjects equipped with GPS devices participated in a 1-hour walk on a hot sunny day and recorded their experience in a field guide. Mi-croclimate measurements were simultaneously collected using the mobile human-biometeorological instrument plat-form MaRTy. Results revealed significant differences in physiologically equivalent temperature (PET) and modified physiologically equivalent temperature (mPET) and between street segments with more than 18 degrees C (25 degrees C mPET) be-tween the maximum and minimum values. Wider range of mPET values reflected the inclusion of individual level data into the model. Streets with higher sky view factor (SVF) and east-west orientation showed a higher PET and mPET overall. Furthermore, we showed evidence of thermal alliesthesia, the pleasure resulting from slight changes in micro -climate conditions. Participants' sense of pleasure was related to the mean PET of the segment they just walked, with linear regression explaining over 60% of the variability. We also showed that estimated percent shade was significantly correlated with SVF, PET, mPET, and pleasure, indicating that participants could sense minor changes in microclimate and perceived shade as pleasant. Although generalization of results is limited by a low sample size, findings of this study improve the understanding of dynamic thermal comfort in complex urban environments and highlight the value of thermal walks as a robust research method. |
format |
text |
author |
DZYUBAN, Yuliya HONDULA, David M. VANOS, Jennifer K. MIDELL, Ariane COSEO, Paul J. KURAS, Evan R. REDMAN, Charles L. |
author_facet |
DZYUBAN, Yuliya HONDULA, David M. VANOS, Jennifer K. MIDELL, Ariane COSEO, Paul J. KURAS, Evan R. REDMAN, Charles L. |
author_sort |
DZYUBAN, Yuliya |
title |
Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city |
title_short |
Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city |
title_full |
Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city |
title_fullStr |
Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city |
title_full_unstemmed |
Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city |
title_sort |
evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2022 |
url |
https://ink.library.smu.edu.sg/cis_research/15 https://ink.library.smu.edu.sg/context/cis_research/article/1014/viewcontent/SSRN_id4009691.pdf |
_version_ |
1770576347510341632 |