Data imputation

Data imputation involves representing missing values in a dataset. Missing data create a number of potential challenges for statistical analysis. Missing values can increase the chances of making Type I and Type II errors, reduce statistical power, and limit the reliability of confidence intervals....

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: ROSENTHAL, Sonny
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2017
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/cis_research/212
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:Data imputation involves representing missing values in a dataset. Missing data create a number of potential challenges for statistical analysis. Missing values can increase the chances of making Type I and Type II errors, reduce statistical power, and limit the reliability of confidence intervals. There are a number of statistical procedures available for researchers to replace missing values with reasonable estimations. Basic methods, such as mean substitution, regression imputation, and hot deck imputation may bias imputed values depending on the mechanism of missingness. Advanced methods include expectation maximization, full information maximum likelihood, and multiple imputation. These methods produce more reliable estimations of missing values, particularly when missingness is not at random.