Public transit infrastructure and heat perceptions in hot and dry climates
Many cities aim to progress toward their sustainability and public health goals by increasing use of their public transit systems. However, without adequate protective infrastructure that provides thermally comfortable conditions for public transit riders, it can be challenging to reach these goals...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2021
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/cis_research_all/19 https://ink.library.smu.edu.sg/context/cis_research_all/article/1018/viewcontent/s00484_021_02074_4_pvoa.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Many cities aim to progress toward their sustainability and public health goals by increasing use of their public transit systems. However, without adequate protective infrastructure that provides thermally comfortable conditions for public transit riders, it can be challenging to reach these goals in hot climates. We took micrometeorological measurements and surveyed riders about their perceptions of heat and heat-coping behaviors at bus stops with a variety of design attributes in Phoenix, AZ, USA, during the summer of 2018. We identified the design attributes and coping behaviors that made riders feel cooler. We observed that current infrastructure standards and material choices for bus stops in Phoenix are insufficient to provide thermal comfort, and can even expose riders to health risks. Almost half of the study participants felt hot or very hot at the time they were surveyed, and more than half reported feeling thermally uncomfortable. On average, shade reduced the physiological equivalent temperature (PET) by 19 degrees C. Moreover, we found significant diurnal differences in PET reductions from the shade provided by various design attributes. For instance, all design attributes were effective in reducing PET in the morning; however, a vegetated awning did not provide statistically significant shade reductions in the afternoon. Temperatures of sun-exposed surfaces of man-made materials exceeded skin burn thresholds in the afternoon, but shade was effective in bringing the same surfaces to safe levels. Aesthetically pleasing stops were rated as cooler than stops rated as less beautiful. We conclude that cities striving to increase public transit use should prioritize thermal comfort when designing public transit stops in hot climates. |
---|