Anomaly Detection on Social Data
The advent of online social media including Facebook, Twitter, Flickr and Youtube has drawn massive attention in recent years. These online platforms generate massive data capturing the behavior of multiple types of human actors as they interact with one another and with resources such as pictures,...
Saved in:
主要作者: | DAI, Hanbo |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2013
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/etd_coll/90 https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1094&context=etd_coll |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Mining coherent anomaly collections on web data
由: DAI, Hanbo, et al.
出版: (2012) -
Generative semi-supervised graph anomaly detection
由: QIAO, Hezhe, et al.
出版: (2024) -
Detecting Anomalies in Bipartite Graphs with Mutual Dependency Principles
由: DAI, Hanbo, et al.
出版: (2012) -
Detecting Anomaly Collections using Extreme Feature Ranks
由: DAI, Hanbo, et al.
出版: (2014) -
Calibrated one-class classification for unsupervised time series anomaly detection
由: XU, Hongzuo, et al.
出版: (2024)