Efficient estimation of generalized nonparametric model under additive structure
In this thesis, we develop novel nonparametric estimation techniques for two distinct classes of models: (1) Generalized Additive Models with Unknown Link Functions (GAMULF) and (2) Generalized Panel Data Transformation Models with Fixed Effects. Both models avoid parametric assumptions on their res...
Saved in:
主要作者: | XIA, Ying |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/etd_coll/493 https://ink.library.smu.edu.sg/context/etd_coll/article/1491/viewcontent/Ying_dissertation_signed.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
More efficient estimation of nonparametric panel data models with random effects
由: SU, Liangjun, et al.
出版: (2007) -
Nonparametric Structural Estimation via Continuous Location Shifts in an Endogenous Regressor
由: PHILLIPS, Peter C. B., et al.
出版: (2009) -
Nonparametric and Semiparametric Panel Econometric Models: Estimation and Testing
由: SU, Liangjun, et al.
出版: (2011) -
Root-N-consistent estimation of fixed-effect panel data transformation models with censoring
由: Chen, S.
出版: (2016) -
Testing Additive Separability of Error Term in Nonparametric Structural Models
由: SU, Liangjun, et al.
出版: (2015)