Analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: A data-driven approach
This thesis focuses on analyzing the decision-making process of taxi drivers and providing data-driven strategies to enhance their performance. By examin- ing comprehensive historical data encompassing passenger demand patterns, drivers’ spatial dynamics, and fare structures, valuable insights are g...
Saved in:
Main Author: | |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2023
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/etd_coll/512 https://ink.library.smu.edu.sg/context/etd_coll/article/1510/viewcontent/GPIS_AY2017_PhD_MengyuJI.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.etd_coll-1510 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.etd_coll-15102023-10-03T06:12:16Z Analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: A data-driven approach JI, Mengyu This thesis focuses on analyzing the decision-making process of taxi drivers and providing data-driven strategies to enhance their performance. By examin- ing comprehensive historical data encompassing passenger demand patterns, drivers’ spatial dynamics, and fare structures, valuable insights are gained into drivers’ choices regarding optimal routes, timing, and areas with high demand. Integrating real-time information sources, such as GPS data and passenger updates, allows drivers to adapt their strategies dynamically to changing traffic conditions and emerging demand patterns. Predictive analytics models, includ- ing ARIMA, XGBoost, and Linear Regression, are utilized to forecast demand flow at key locations, enabling proactive decision-making and operational effi- ciency. The incorporation of decision support systems, integrating predicted passenger flow with a Markov Decision Process (MDP) model, provides intelli- gent recommendations for resource allocation and performance optimization. Behavioral analysis is conducted to understand driver preferences, influencing the design of incentive mechanisms that motivate desirable behaviors. Continu- ous learning and adaptation through iterative population learning techniques ensure responsiveness to evolving passenger preferences and market dynamics. By implementing these data-driven strategies, taxi drivers can make informed decisions, optimize their performance, and provide enhanced services in the dynamic transportation industry. 2023-07-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/etd_coll/512 https://ink.library.smu.edu.sg/context/etd_coll/article/1510/viewcontent/GPIS_AY2017_PhD_MengyuJI.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Dissertations and Theses Collection (Open Access) eng Institutional Knowledge at Singapore Management University Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Databases and Information Systems |
spellingShingle |
Databases and Information Systems JI, Mengyu Analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: A data-driven approach |
description |
This thesis focuses on analyzing the decision-making process of taxi drivers and providing data-driven strategies to enhance their performance. By examin- ing comprehensive historical data encompassing passenger demand patterns, drivers’ spatial dynamics, and fare structures, valuable insights are gained into drivers’ choices regarding optimal routes, timing, and areas with high demand. Integrating real-time information sources, such as GPS data and passenger updates, allows drivers to adapt their strategies dynamically to changing traffic conditions and emerging demand patterns. Predictive analytics models, includ- ing ARIMA, XGBoost, and Linear Regression, are utilized to forecast demand flow at key locations, enabling proactive decision-making and operational effi- ciency. The incorporation of decision support systems, integrating predicted passenger flow with a Markov Decision Process (MDP) model, provides intelli- gent recommendations for resource allocation and performance optimization. Behavioral analysis is conducted to understand driver preferences, influencing the design of incentive mechanisms that motivate desirable behaviors. Continu- ous learning and adaptation through iterative population learning techniques ensure responsiveness to evolving passenger preferences and market dynamics. By implementing these data-driven strategies, taxi drivers can make informed decisions, optimize their performance, and provide enhanced services in the dynamic transportation industry. |
format |
text |
author |
JI, Mengyu |
author_facet |
JI, Mengyu |
author_sort |
JI, Mengyu |
title |
Analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: A data-driven approach |
title_short |
Analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: A data-driven approach |
title_full |
Analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: A data-driven approach |
title_fullStr |
Analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: A data-driven approach |
title_full_unstemmed |
Analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: A data-driven approach |
title_sort |
analyzing taxi drivers’ decision-making and recommending strategies for enhanced performance: a data-driven approach |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2023 |
url |
https://ink.library.smu.edu.sg/etd_coll/512 https://ink.library.smu.edu.sg/context/etd_coll/article/1510/viewcontent/GPIS_AY2017_PhD_MengyuJI.pdf |
_version_ |
1779157211063255040 |