Correlation and causation analysis for cross-sectional and panel data
This dissertation investigates how data, algorithms, and expert knowledge can be harnessed to better understand human behavior and enhance well-being. It emphasizes the critical importance of interdisciplinary collaboration to bridge knowledge gaps and foster insights that support preventive care, c...
محفوظ في:
المؤلف الرئيسي: | NUQOBA, Barry |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/etd_coll/665 https://ink.library.smu.edu.sg/context/etd_coll/article/1663/viewcontent/GPIS_AY2019_PhD_Barry_Nuqoba.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Granger causality and structural causality in cross-section and panel data
بواسطة: LU, Xun, وآخرون
منشور في: (2017) -
Granger Causality and Structural Causality in Cross-Section and Panel Data
بواسطة: LU, Xun, وآخرون
منشور في: (2016) -
Identification for difference in differences with cross-section and panel data
بواسطة: Lee, M.-j., وآخرون
منشور في: (2011) -
Sieve Estimation of Panel Data Models with Cross Section Dependence
بواسطة: SU, Liangjun, وآخرون
منشور في: (2012) -
Three Essays on Large Panel Data Models with Cross-Sectional Dependence
بواسطة: ZHANG, Yonghui
منشور في: (2013)