Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection

Mobile applications are increasingly popular, and help mobile users in many aspects of their lifestyle. Applications have access to a wealth of information about the user through powerful developer APIs. It is known that most applications, even popular and highly regarded ones, utilize and leak priv...

Full description

Saved in:
Bibliographic Details
Main Author: CHAN, Joo Keng Joseph
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2017
Subjects:
Online Access:https://ink.library.smu.edu.sg/etd_coll_all/39
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1041&context=etd_coll_all
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.etd_coll_all-1041
record_format dspace
spelling sg-smu-ink.etd_coll_all-10412017-11-02T07:28:17Z Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection CHAN, Joo Keng Joseph Mobile applications are increasingly popular, and help mobile users in many aspects of their lifestyle. Applications have access to a wealth of information about the user through powerful developer APIs. It is known that most applications, even popular and highly regarded ones, utilize and leak privacy data to the network. It is also common for applications to over-access privacy data that does not fit the functionality profile of the application. Although there are available privacy detection tools, they might not provide sufficient context to help users better understand the privacy behaviours of their applications. In this dissertation, I present the design, implementation and evaluation of an Automated Privacy Testing System called MAMBA for uncovering the causes of user-triggered leaks in Android applications (’leak causes’) as well as their paths taken to reach the leaks. Privacy ’leak-causes’ refer to privacy usage and leak characteristics of applications as well as user-actions and activities with privacy implications. Paths refers to page transition paths as well as the sequence of user actions required to cause these transitions. This solution is based on hybrid application of dynamic/static analysis of Android applications, and it involves improving automated testing of applications for run-time verification of the ’leak causes’. The automated testing is based on directed testing, and automatically traverses applications from initial to resulting activities with potential leak behaviours, based on paths obtained from static analysis of the Android callback control flows. I demonstrate the advantages of my automated testing system through standalone evaluations as well as comparisons with another automated testing system - Automated Model Checker (AMC) [39]. The results show that MAMBA has large improvements in terms of less testing time required, with only a small reduction in coverage. MAMBA also has good privacy data access accuracy (Precision=79.84%, Recall=68.90%), and moderate privacy data leak accuracy (Precision=35.66% , Recall=56.10%) - (Recall values were measured relative to AMC). Privacy detectors of ProtectMyPrivacy (PMP) and TaintDroid were utilized for runtime measurements. I also show how the resulting outputs of privacy ’leak causes’ can be utilized together with a privacy message overlay mechanism for warning users of privacy triggers interactively during application uses. I have conducted field and lab user studies to show that the privacy messages can aid users to utilize applications in a way that uses less of their privacy data, if they do not agree with the privacy usages. I also found that there are other factors which influence message effectiveness. 2017-11-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/etd_coll_all/39 https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1041&context=etd_coll_all http://creativecommons.org/licenses/by-nc-nd/4.0/ Dissertations and Theses Collection eng Institutional Knowledge at Singapore Management University Mobile Privacy Automated Testing Static/Dynamic Analysis Field User-Study Experiments Data Log Mining Databases and Information Systems Information Security
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Mobile Privacy
Automated Testing
Static/Dynamic Analysis
Field User-Study Experiments
Data Log Mining
Databases and Information Systems
Information Security
spellingShingle Mobile Privacy
Automated Testing
Static/Dynamic Analysis
Field User-Study Experiments
Data Log Mining
Databases and Information Systems
Information Security
CHAN, Joo Keng Joseph
Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection
description Mobile applications are increasingly popular, and help mobile users in many aspects of their lifestyle. Applications have access to a wealth of information about the user through powerful developer APIs. It is known that most applications, even popular and highly regarded ones, utilize and leak privacy data to the network. It is also common for applications to over-access privacy data that does not fit the functionality profile of the application. Although there are available privacy detection tools, they might not provide sufficient context to help users better understand the privacy behaviours of their applications. In this dissertation, I present the design, implementation and evaluation of an Automated Privacy Testing System called MAMBA for uncovering the causes of user-triggered leaks in Android applications (’leak causes’) as well as their paths taken to reach the leaks. Privacy ’leak-causes’ refer to privacy usage and leak characteristics of applications as well as user-actions and activities with privacy implications. Paths refers to page transition paths as well as the sequence of user actions required to cause these transitions. This solution is based on hybrid application of dynamic/static analysis of Android applications, and it involves improving automated testing of applications for run-time verification of the ’leak causes’. The automated testing is based on directed testing, and automatically traverses applications from initial to resulting activities with potential leak behaviours, based on paths obtained from static analysis of the Android callback control flows. I demonstrate the advantages of my automated testing system through standalone evaluations as well as comparisons with another automated testing system - Automated Model Checker (AMC) [39]. The results show that MAMBA has large improvements in terms of less testing time required, with only a small reduction in coverage. MAMBA also has good privacy data access accuracy (Precision=79.84%, Recall=68.90%), and moderate privacy data leak accuracy (Precision=35.66% , Recall=56.10%) - (Recall values were measured relative to AMC). Privacy detectors of ProtectMyPrivacy (PMP) and TaintDroid were utilized for runtime measurements. I also show how the resulting outputs of privacy ’leak causes’ can be utilized together with a privacy message overlay mechanism for warning users of privacy triggers interactively during application uses. I have conducted field and lab user studies to show that the privacy messages can aid users to utilize applications in a way that uses less of their privacy data, if they do not agree with the privacy usages. I also found that there are other factors which influence message effectiveness.
format text
author CHAN, Joo Keng Joseph
author_facet CHAN, Joo Keng Joseph
author_sort CHAN, Joo Keng Joseph
title Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection
title_short Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection
title_full Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection
title_fullStr Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection
title_full_unstemmed Uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection
title_sort uncovering user-triggered privacy leaks in mobile applications and their utility in privacy protection
publisher Institutional Knowledge at Singapore Management University
publishDate 2017
url https://ink.library.smu.edu.sg/etd_coll_all/39
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1041&context=etd_coll_all
_version_ 1712300785603182592