Discrete Singular Convolution and Its Application to the Analysis of Plates with Internal Supports. Part 1: Theory and Algorithm

This paper presents a novel computational approach, the discrete singular convolution (DSC) algorithm, for analysing plate structures. The basic philosophy behind the DSC algorithm for the approximation of functions and their derivatives is studied. Approximations to the delta distribution are const...

Full description

Saved in:
Bibliographic Details
Main Authors: WEI, G. W., ZHAO, Yibao, XIANG, Y.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2002
Subjects:
Online Access:https://ink.library.smu.edu.sg/lkcsb_research/931
https://ink.library.smu.edu.sg/context/lkcsb_research/article/1930/viewcontent/Discrete_singular_convolution_pt1_pv.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:This paper presents a novel computational approach, the discrete singular convolution (DSC) algorithm, for analysing plate structures. The basic philosophy behind the DSC algorithm for the approximation of functions and their derivatives is studied. Approximations to the delta distribution are constructed as either bandlimited reproducing kernels or approximate reproducing kernels. Unified features of the DSC algorithm for solving differential equations are explored. It is demonstrated that different methods of implementation for the present algorithm, such as global, local, Galerkin, collocation, and finite difference, can be deduced from a single starting point. The use of the algorithm for the vibration analysis of plates with internal supports is discussed. Detailed formulation is given to the treatment of different plate boundary conditions, including simply supported, elastically supported and clamped edges. This work paves the way for applying the DSC approach in the following paper to plates with complex support conditions, which have not been fully addressed in the literature yet.