Chaos Resonance: Two-State Model with Chaos-Induced Escape over Potential Barrier
We consider the resonant effects of chaotic fluctuations on a strongly damped particle in a bistable potential driven by weak sinusoidal perturbation. We derive analytical expressions of chaos-induced transition rate between the neighboring potential wells based on the inhomogeneous Smoluchowski equ...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2005
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/lkcsb_research/1872 https://doi.org/10.1103/PhysRevE.72.036222 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We consider the resonant effects of chaotic fluctuations on a strongly damped particle in a bistable potential driven by weak sinusoidal perturbation. We derive analytical expressions of chaos-induced transition rate between the neighboring potential wells based on the inhomogeneous Smoluchowski equation. Our first-order analysis reveals that the transition rate has the form of the Kramers escape rate except for a perturbed prefactor. This modification to the prefactor is found to arise from the statistical asymmetry of the chaotic noise. By means of the two-state model and the chaos-induced transition rate, we arrive at an analytical expression of the signal-to-noise ratio (SNR). Our first-order SNR shows that chaotic resonance can correspond directly to stochastic resonance. |
---|