Analysis on the Origin of Directed Current from a Class of Microscopic Chaotic Fluctuations
We show that the Perron-Frobenius equation of microscopic chaos based on double symmetric maps leads to an inhomogeneous Smoluchowski equation with a source term. Our perturbative analysis reveals that the source term gives rise to a directed current for a strongly damped particle in a spatially per...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2004
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/lkcsb_research/1874 https://doi.org/10.1103/PhysRevE.69.031103 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We show that the Perron-Frobenius equation of microscopic chaos based on double symmetric maps leads to an inhomogeneous Smoluchowski equation with a source term. Our perturbative analysis reveals that the source term gives rise to a directed current for a strongly damped particle in a spatially periodic potential. In addition, our result proves that in the zeroth-order limit, the position distribution of the particle obeys the Smoluchowski equation even though the fluctuating force is deterministic. |
---|