C-Ascending Support Vector Machines for Financial Time Series Forecasting

This paper proposes a modified version of support vector machines (SVMs), called c-ascending support vector machines (c-ASVMs), to model non-stationary financial time series. c-ASVMS are obtained by a simple modification of the regularized risk function in SVMs whereby the recent ?-insensitive error...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: LI, Juan Cao, KOK, Seng Chua, LIM, Kian Guan
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2003
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/lkcsb_research/2783
https://doi.org/10.1109/CIFER.2003.1196277
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:This paper proposes a modified version of support vector machines (SVMs), called c-ascending support vector machines (c-ASVMs), to model non-stationary financial time series. c-ASVMS are obtained by a simple modification of the regularized risk function in SVMs whereby the recent ?-insensitive errors are penalized more heavily than the distant ?-insensitive errors. This procedure is based on the prior knowledge that in the non-stationary financial time series, the recent past data could provide more important information than the distant past data. In the experiment, c-ASVMS are tested using three real futures collected from the Chicago Mercantile Market. It is shown that the c-ASVMS with the actually ordered sample data consistently forecast better than the standard SVMs, with the worst performance when the reversely ordered sample data are used. Furthermore, the c-ASVMs use fewer support vectors than those of the standard SVMs, resulting in a sparser representation of solution.