Distributionally robust mixed integer linear programs: Persistency models with applications

In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic p...

全面介紹

Saved in:
書目詳細資料
Main Authors: LI, Xiaobo, NATARAJAN, Karthik, TEO, Chung-Piaw, ZHENG, Zhichao
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2014
主題:
在線閱讀:https://ink.library.smu.edu.sg/lkcsb_research/3629
https://ink.library.smu.edu.sg/context/lkcsb_research/article/4628/viewcontent/Distributionally_robust_mixed_integer_linear_programs__Persistenc.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic programming methods have been recently used to find distributionally robust bounds for the expected optimal value of mixed integer linear programs over the set of all distributions with the given moment information. These methods also provide additional information on the probability that a binary variable attains a value of 1 in the optimal solution for 0–1 integer linear programs. This probability is defined as the persistency of a binary variable. In this paper, we provide an overview of the complexity results for these models, conic programming formulations that are readily implementable with standard solvers and important applications of persistency models. The main message that we hope to convey through this review is that tools of conic programming provide important insights in the probabilistic analysis of discrete optimization problems. These tools lead to distributionally robust bounds with applications in activity networks, vertex packing, discrete choice models, random walks and sequencing problems, and newsvendor problems.