Towards better data augmentation using Wasserstein distance in variational auto-encoder
VAE, or variational auto-encoder, compresses data into latent attributes, and generates new data of different varieties. VAE based on KL divergence has been considered as an effective technique for data augmentation. In this paper, we propose the use of Wasserstein distance as a measure of distribut...
محفوظ في:
المؤلفون الرئيسيون: | CHEN, Zichuan, LIU, Peng |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/lkcsb_research/7046 https://ink.library.smu.edu.sg/context/lkcsb_research/article/8045/viewcontent/2109.14795.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Seeking better Sharpe ratio via Bayesian optimization
بواسطة: LIU, Peng
منشور في: (2023) -
Financial literacy and numerical ability: Keys to better mortgage outcomes
بواسطة: Singapore Management University
منشور في: (2012) -
A market-augmented model for SIMEX Brent crude oil futures contracts
بواسطة: SEQUEIRA, J. M.,, وآخرون
منشور في: (2000) -
Financial literacy and numerical ability: keys to better mortgage outcomes
بواسطة: Knowledge@SMU
منشور في: (2012) -
Large mutual fund families: Bigger may not always be better
بواسطة: Knowledge@SMU
منشور في: (2012)