Twitter-LDA
Latent Dirichlet Allocation (LDA) has been widely used in textual analysis. The original LDA is used to find hidden "topics" in the documents, where a topic is a subject like "arts" or "education" that is discussed in the documents. The original setting in LDA, where ea...
Saved in:
Main Authors: | ZHAO, Wayne Xin, JIANG, Jing, WENG, Jianshu, HE, Jing, LIM, Ee Peng, YAN, Hongfei, LI, Xiaoming |
---|---|
格式: | text |
出版: |
Institutional Knowledge at Singapore Management University
2011
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/researchdata/12 https://github.com/minghui/Twitter-LDA |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid
由: ZHAO, Xin, et al.
出版: (2010) -
Comparing Twitter and Traditional Media using Topic Models
由: ZHAO, Wayne Xin, et al.
出版: (2011) -
Topical Keyphrase Extraction from Twitter
由: ZHAO, Xin, et al.
出版: (2011) -
Twitterrank: Finding topic-sensitive influential Twitterers
由: WENG, Jianshu, et al.
出版: (2010) -
It Is Not Just What We Say, But How We Say Them: LDA-based Behavior-Topic Model
由: QIU, Minghui, et al.
出版: (2013)