Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds
SPIDER (Stochastic Path Integrated Differential EstimatoR) is an efficient gradient estimation technique developed for non-convex stochastic optimization. Although having been shown to attain nearly optimal computational complexity bounds, the SPIDERtype methods are limited to linear metric spaces....
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9004 https://ink.library.smu.edu.sg/context/sis_research/article/10007/viewcontent/2019_AIS_Riemannian.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-10007 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-100072024-07-25T08:16:31Z Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds ZHOU, Pan YUAN, Xiao-Tong FENG, Jiashi SPIDER (Stochastic Path Integrated Differential EstimatoR) is an efficient gradient estimation technique developed for non-convex stochastic optimization. Although having been shown to attain nearly optimal computational complexity bounds, the SPIDERtype methods are limited to linear metric spaces. In this paper, we introduce the Riemannian SPIDER (R-SPIDER) method as a novel nonlinear-metric extension of SPIDER for efficient non-convex optimization on Riemannian manifolds. We prove that for finitesum problems with n components, R-SPIDER converges to an -accuracy stationary point within O min n + √ n 2 , 1 3 stochastic gradient evaluations, which is sharper in magnitude than the prior Riemannian first-order methods. For online optimization, R-SPIDER is shown to converge with O 1 3 complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. Especially, for gradient dominated functions, we further develop a variant of R-SPIDER and prove its linear convergence rate. Numerical results demonstrate the computational efficiency of the proposed method 2019-04-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/9004 https://ink.library.smu.edu.sg/context/sis_research/article/10007/viewcontent/2019_AIS_Riemannian.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Graphics and Human Computer Interfaces |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Graphics and Human Computer Interfaces |
spellingShingle |
Graphics and Human Computer Interfaces ZHOU, Pan YUAN, Xiao-Tong FENG, Jiashi Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds |
description |
SPIDER (Stochastic Path Integrated Differential EstimatoR) is an efficient gradient estimation technique developed for non-convex stochastic optimization. Although having been shown to attain nearly optimal computational complexity bounds, the SPIDERtype methods are limited to linear metric spaces. In this paper, we introduce the Riemannian SPIDER (R-SPIDER) method as a novel nonlinear-metric extension of SPIDER for efficient non-convex optimization on Riemannian manifolds. We prove that for finitesum problems with n components, R-SPIDER converges to an -accuracy stationary point within O min n + √ n 2 , 1 3 stochastic gradient evaluations, which is sharper in magnitude than the prior Riemannian first-order methods. For online optimization, R-SPIDER is shown to converge with O 1 3 complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. Especially, for gradient dominated functions, we further develop a variant of R-SPIDER and prove its linear convergence rate. Numerical results demonstrate the computational efficiency of the proposed method |
format |
text |
author |
ZHOU, Pan YUAN, Xiao-Tong FENG, Jiashi |
author_facet |
ZHOU, Pan YUAN, Xiao-Tong FENG, Jiashi |
author_sort |
ZHOU, Pan |
title |
Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds |
title_short |
Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds |
title_full |
Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds |
title_fullStr |
Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds |
title_full_unstemmed |
Faster first-order methods for stochastic non-convex optimization on Riemannian manifolds |
title_sort |
faster first-order methods for stochastic non-convex optimization on riemannian manifolds |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2019 |
url |
https://ink.library.smu.edu.sg/sis_research/9004 https://ink.library.smu.edu.sg/context/sis_research/article/10007/viewcontent/2019_AIS_Riemannian.pdf |
_version_ |
1814047689622421504 |