Generalized majorization-minimization for non-convex optimization
Majorization-Minimization (MM) algorithms optimize an objective function by iteratively minimizing its majorizing surrogate and offer attractively fast convergence rate for convex problems. However, their convergence behaviors for non-convex problems remain unclear. In this paper, we propose a novel...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2019
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9006 https://ink.library.smu.edu.sg/context/sis_research/article/10009/viewcontent/2019_IJCAI_MM.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Majorization-Minimization (MM) algorithms optimize an objective function by iteratively minimizing its majorizing surrogate and offer attractively fast convergence rate for convex problems. However, their convergence behaviors for non-convex problems remain unclear. In this paper, we propose a novel MM surrogate function from strictly upper bounding the objective to bounding the objective in expectation. With this generalized surrogate conception, we develop a new optimization algorithm, termed SPI-MM, that leverages the recent proposed SPIDER for more efficient non-convex optimization. We prove that for finite-sum problems, the SPI-MM algorithm converges to an stationary point within deterministic and lower stochastic gradient complexity. To our best knowledge, this work gives the first non-asymptotic convergence analysis for MM-alike algorithms in general non-convex optimization. Extensive empirical studies on non-convex logistic regression and sparse PCA demonstrate the advantageous efficiency of the proposed algorithm and validate our theoretical results. |
---|