Compositional policy learning in stochastic control systems with formal guarantees
Reinforcement learning has shown promising results in learning neural network policies for complicated control tasks. However, the lack of formal guarantees about the behavior of such policies remains an impediment to their deployment. We propose a novel method for learning a composition of neural n...
محفوظ في:
المؤلفون الرئيسيون: | ZIKELIC, Dorde, LECHNER, Mathias, Verma, Abhinav, CHATTERJEE, Krishnendu, HENZINGER, Thomas A. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9031 https://ink.library.smu.edu.sg/context/sis_research/article/10034/viewcontent/13726_compositional_policy_learning_.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Learning control policies for stochastic systems with reach-avoid guarantees
بواسطة: ZIKELIC, Dorde, وآخرون
منشور في: (2023) -
Learning provably stabilizing neural controllers for discrete-time stochastic systems
بواسطة: ANSARIPOUR, Matin, وآخرون
منشور في: (2023) -
A learner-verifier framework for neural network controllers and certificates of stochastic systems
بواسطة: CHATTERJEE, Krishnendu, وآخرون
منشور في: (2023) -
Stochastic invariants for probabilistic termination
بواسطة: CHATTERJEE, Krishnendu, وآخرون
منشور في: (2017) -
Sound and complete certificates for quantitative termination analysis of probabilistic programs
بواسطة: CHATTERJEE, Krishnendu, وآخرون
منشور في: (2022)