Joint learning of answer selection and answer summary generation in community question answering
Community question answering (CQA) gains increasing popularity in both academy and industry recently. However, the redundancy and lengthiness issues of crowdsourced answers limit the performance of answer selection and lead to reading difficulties and misunderstandings for community users. To solve...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2020
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9102 https://ink.library.smu.edu.sg/context/sis_research/article/10105/viewcontent/6266_Article_Text_9491_1_10_20200516.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-10105 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-101052024-08-01T15:04:15Z Joint learning of answer selection and answer summary generation in community question answering DENG, Yang LAM, Wai XIE, Yuexiang CHEN, Daoyuan LI, Yaliang YANG, Min SHEN, Ying Community question answering (CQA) gains increasing popularity in both academy and industry recently. However, the redundancy and lengthiness issues of crowdsourced answers limit the performance of answer selection and lead to reading difficulties and misunderstandings for community users. To solve these problems, we tackle the tasks of answer selection and answer summary generation in CQA with a novel joint learning model. Specifically, we design a question-driven pointer-generator network, which exploits the correlation information between question-Answer pairs to aid in attending the essential information when generating answer summaries. Meanwhile, we leverage the answer summaries to alleviate noise in original lengthy answers when ranking the relevancy degrees of question-Answer pairs. In addition, we construct a new large-scale CQA corpus, WikiHowQA, which contains long answers for answer selection as well as reference summaries for answer summarization. The experimental results show that the joint learning method can effectively address the answer redundancy issue in CQA and achieves state-ofthe-art results on both answer selection and text summarization tasks. Furthermore, the proposed model is shown to be of great transferring ability and applicability for resource-poor CQA tasks, which lack of reference answer summaries. 2020-02-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/9102 info:doi/10.1609/aaai.v34i05.6266 https://ink.library.smu.edu.sg/context/sis_research/article/10105/viewcontent/6266_Article_Text_9491_1_10_20200516.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Community question answering Joint learning Question-answer pairs Summary generation Text summarization Databases and Information Systems Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Community question answering Joint learning Question-answer pairs Summary generation Text summarization Databases and Information Systems Information Security |
spellingShingle |
Community question answering Joint learning Question-answer pairs Summary generation Text summarization Databases and Information Systems Information Security DENG, Yang LAM, Wai XIE, Yuexiang CHEN, Daoyuan LI, Yaliang YANG, Min SHEN, Ying Joint learning of answer selection and answer summary generation in community question answering |
description |
Community question answering (CQA) gains increasing popularity in both academy and industry recently. However, the redundancy and lengthiness issues of crowdsourced answers limit the performance of answer selection and lead to reading difficulties and misunderstandings for community users. To solve these problems, we tackle the tasks of answer selection and answer summary generation in CQA with a novel joint learning model. Specifically, we design a question-driven pointer-generator network, which exploits the correlation information between question-Answer pairs to aid in attending the essential information when generating answer summaries. Meanwhile, we leverage the answer summaries to alleviate noise in original lengthy answers when ranking the relevancy degrees of question-Answer pairs. In addition, we construct a new large-scale CQA corpus, WikiHowQA, which contains long answers for answer selection as well as reference summaries for answer summarization. The experimental results show that the joint learning method can effectively address the answer redundancy issue in CQA and achieves state-ofthe-art results on both answer selection and text summarization tasks. Furthermore, the proposed model is shown to be of great transferring ability and applicability for resource-poor CQA tasks, which lack of reference answer summaries. |
format |
text |
author |
DENG, Yang LAM, Wai XIE, Yuexiang CHEN, Daoyuan LI, Yaliang YANG, Min SHEN, Ying |
author_facet |
DENG, Yang LAM, Wai XIE, Yuexiang CHEN, Daoyuan LI, Yaliang YANG, Min SHEN, Ying |
author_sort |
DENG, Yang |
title |
Joint learning of answer selection and answer summary generation in community question answering |
title_short |
Joint learning of answer selection and answer summary generation in community question answering |
title_full |
Joint learning of answer selection and answer summary generation in community question answering |
title_fullStr |
Joint learning of answer selection and answer summary generation in community question answering |
title_full_unstemmed |
Joint learning of answer selection and answer summary generation in community question answering |
title_sort |
joint learning of answer selection and answer summary generation in community question answering |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2020 |
url |
https://ink.library.smu.edu.sg/sis_research/9102 https://ink.library.smu.edu.sg/context/sis_research/article/10105/viewcontent/6266_Article_Text_9491_1_10_20200516.pdf |
_version_ |
1814047731236208640 |