Beyond factuality: A comprehensive evaluation of large language models as knowledge generators
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks when being prompted to generate world knowledge. Yet, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge. In light of this,...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2023
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9117 https://ink.library.smu.edu.sg/context/sis_research/article/10120/viewcontent/Beyond.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-10120 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-101202024-08-01T14:39:27Z Beyond factuality: A comprehensive evaluation of large language models as knowledge generators CHEN, Liang DENG, Yang BIAN, Yatao QIN, Zeyu WU, Bingzhe CHUA, Tat-Seng WONG, Kam-Fai Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks when being prompted to generate world knowledge. Yet, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge. In light of this, we introduce CONNER, a COmpreheNsive kNowledge Evaluation fRamework, designed to systematically and automatically evaluate generated knowledge from six important perspectives - Factuality, Relevance, Coherence, Informativeness, Helpfulness and Validity. We conduct an extensive empirical analysis of the generated knowledge from three different types of LLMs on two widely-studied knowledge-intensive tasks, i.e., open-domain question answering and knowledge-grounded dialogue. Surprisingly, our study reveals that the factuality of generated knowledge, even if lower, does not significantly hinder downstream tasks. Instead, the relevance and coherence of the outputs are more important than small factual mistakes. Further, we show how to use CONNER to improve knowledge-intensive tasks by designing two strategies: Prompt Engineering and Knowledge Selection. Our evaluation code and LLM-generated knowledge with human annotations will be released to facilitate future research. 2023-12-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/9117 info:doi/10.18653/v1/2023.emnlp-main.390 https://ink.library.smu.edu.sg/context/sis_research/article/10120/viewcontent/Beyond.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Comprehensive evaluation Down-stream Empirical analysis Evaluation framework Informativeness Knowledge evaluations Knowledge intensive tasks Language model Retrieval techniques World knowledge Databases and Information Systems Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Comprehensive evaluation Down-stream Empirical analysis Evaluation framework Informativeness Knowledge evaluations Knowledge intensive tasks Language model Retrieval techniques World knowledge Databases and Information Systems Information Security |
spellingShingle |
Comprehensive evaluation Down-stream Empirical analysis Evaluation framework Informativeness Knowledge evaluations Knowledge intensive tasks Language model Retrieval techniques World knowledge Databases and Information Systems Information Security CHEN, Liang DENG, Yang BIAN, Yatao QIN, Zeyu WU, Bingzhe CHUA, Tat-Seng WONG, Kam-Fai Beyond factuality: A comprehensive evaluation of large language models as knowledge generators |
description |
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks when being prompted to generate world knowledge. Yet, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge. In light of this, we introduce CONNER, a COmpreheNsive kNowledge Evaluation fRamework, designed to systematically and automatically evaluate generated knowledge from six important perspectives - Factuality, Relevance, Coherence, Informativeness, Helpfulness and Validity. We conduct an extensive empirical analysis of the generated knowledge from three different types of LLMs on two widely-studied knowledge-intensive tasks, i.e., open-domain question answering and knowledge-grounded dialogue. Surprisingly, our study reveals that the factuality of generated knowledge, even if lower, does not significantly hinder downstream tasks. Instead, the relevance and coherence of the outputs are more important than small factual mistakes. Further, we show how to use CONNER to improve knowledge-intensive tasks by designing two strategies: Prompt Engineering and Knowledge Selection. Our evaluation code and LLM-generated knowledge with human annotations will be released to facilitate future research. |
format |
text |
author |
CHEN, Liang DENG, Yang BIAN, Yatao QIN, Zeyu WU, Bingzhe CHUA, Tat-Seng WONG, Kam-Fai |
author_facet |
CHEN, Liang DENG, Yang BIAN, Yatao QIN, Zeyu WU, Bingzhe CHUA, Tat-Seng WONG, Kam-Fai |
author_sort |
CHEN, Liang |
title |
Beyond factuality: A comprehensive evaluation of large language models as knowledge generators |
title_short |
Beyond factuality: A comprehensive evaluation of large language models as knowledge generators |
title_full |
Beyond factuality: A comprehensive evaluation of large language models as knowledge generators |
title_fullStr |
Beyond factuality: A comprehensive evaluation of large language models as knowledge generators |
title_full_unstemmed |
Beyond factuality: A comprehensive evaluation of large language models as knowledge generators |
title_sort |
beyond factuality: a comprehensive evaluation of large language models as knowledge generators |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2023 |
url |
https://ink.library.smu.edu.sg/sis_research/9117 https://ink.library.smu.edu.sg/context/sis_research/article/10120/viewcontent/Beyond.pdf |
_version_ |
1814047746742550528 |