RMIX: Learning risk-sensitive policies for cooperative reinforcement learning agents
Current value-based multi-agent reinforcement learning methods optimize individual Q values to guide individuals' behaviours via centralized training with decentralized execution (CTDE). However, such expected, i.e., risk-neutral, Q value is not sufficient even with CTDE due to the randomness o...
محفوظ في:
المؤلفون الرئيسيون: | QIU, Wei, WANG, Xinrun, YU, Runsheng, HE, Xu, WANG, Rundong, AN, Bo, OBRAZTSOVA, Svetlana, RABINOVICH, Zinovi |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9137 https://ink.library.smu.edu.sg/context/sis_research/article/10140/viewcontent/NeurIPS_2021_rmix__pvoa.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Learning to collaborate in multi-module recommendation via multi-agent reinforcement learning without communication
بواسطة: HE, Xu, وآخرون
منشور في: (2020) -
Learning expensive coordination: An event-based deep RL approach
بواسطة: YU, Runsheng, وآخرون
منشور في: (2020) -
PRUDEX-Compass: Towards systematic evaluation of reinforcement learning in financial markets
بواسطة: SUN, Shuo, وآخرون
منشور في: (2023) -
Transition-informed reinforcement learning for large-scale Stackelberg mean-field games.
بواسطة: LI, Pengdeng, وآخرون
منشور في: (2024) -
Understanding Sequential Decisions via Inverse Reinforcement Learning
بواسطة: LIU, Siyuan, وآخرون
منشور في: (2013)