Multi-hop inference for question-driven summarization

Question-driven summarization has been recently studied as an effective approach to summarizing the source document to produce concise but informative answers for non-factoid questions. In this work, we propose a novel question-driven abstractive summarization method, Multi-hop Selective Generator (...

Full description

Saved in:
Bibliographic Details
Main Authors: DENG, Yang, ZHANG, Wenxuan, LAM, Wai
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2020
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/9154
https://ink.library.smu.edu.sg/context/sis_research/article/10157/viewcontent/2020.emnlp_main.547.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Question-driven summarization has been recently studied as an effective approach to summarizing the source document to produce concise but informative answers for non-factoid questions. In this work, we propose a novel question-driven abstractive summarization method, Multi-hop Selective Generator (MSG), to incorporate multi-hop reasoning into question-driven summarization and, meanwhile, provide justifications for the generated summaries. Specifically, we jointly model the relevance to the question and the interrelation among different sentences via a human-like multi-hop inference module, which captures important sentences for justifying the summarized answer. A gated selective pointer generator network with a multi-view coverage mechanism is designed to integrate diverse information from different perspectives. Experimental results show that the proposed method consistently outperforms state-of-the-art methods on two non-factoid QA datasets, namely WikiHow and PubMedQA.