Robust auto-scaling with probabilistic workload forecasting for cloud databases
Auto-scaling is crucial for achieving elasticity in cloud databases as well as other cloud systems. Predictive auto-scaling, which leverages forecasting techniques to adjust resources based on predicted workload, has been widely adopted. However, the inherent inaccuracy of forecasting presents a sig...
محفوظ في:
المؤلفون الرئيسيون: | HANG, Haitian, TANG, Xiu, SUN, Jianling, BAO, Lingfeng, LO, David, WANG, Haoye |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9264 https://ink.library.smu.edu.sg/context/sis_research/article/10264/viewcontent/Robust_Auto_Scaling_ICDE2024_av.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Towards efficient resource allocation for heterogeneous workloads in IaaS clouds
بواسطة: Wei, Lei, وآخرون
منشور في: (2020) -
Dynamic workload assignment in video surveillance systems
بواسطة: Saini, M., وآخرون
منشور في: (2013) -
Adaptive workload equalization in multi-camera surveillance systems
بواسطة: Saini, M., وآخرون
منشور في: (2013) -
Evolutionary optimal virtual machine placement and demand forecaster for cloud computing
بواسطة: Mark, C.C.T., وآخرون
منشور في: (2014) -
Holistic teaching workload allocation for research-intensive universities
بواسطة: Roopchandani, Arpit
منشور في: (2024)