Learning multi-faceted prototypical user interests
We seek to uncover the latent interest units from behavioral data to better learn user preferences under the VAE framework. Existing practices tend to ignore the multiple facets of item characteristics, which may not capture it at appropriate granularity. Moreover, current studies equate the granula...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2024
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9281 https://ink.library.smu.edu.sg/context/sis_research/article/10281/viewcontent/5185_Learning_Multi_Faceted_Pr.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-10281 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-102812024-10-17T07:54:44Z Learning multi-faceted prototypical user interests TRAN, Nhu Thuat LAUW, Hady W. We seek to uncover the latent interest units from behavioral data to better learn user preferences under the VAE framework. Existing practices tend to ignore the multiple facets of item characteristics, which may not capture it at appropriate granularity. Moreover, current studies equate the granularity of item space to that of user interests, which we postulate is not ideal as user interests would likely map to a small subset of item space. In addition, the compositionality of user interests has received inadequate attention, preventing the modeling of interactions between explanatory factors driving a user's decision. To resolve this, we propose to align user interests with multi-faceted item characteristics. First, we involve prototype-based representation learning to discover item characteristics along multiple facets. Second, we compose user interests from uncovered item characteristics via binding mechanism, separating the granularity of user preferences from that of item space. Third, we design a dedicated bi-directional binding block, aiding the derivation of compositional user interests. On real-world datasets, the experimental results demonstrate the strong performance of our proposed method compared to a series of baselines. 2024-05-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/9281 https://ink.library.smu.edu.sg/context/sis_research/article/10281/viewcontent/5185_Learning_Multi_Faceted_Pr.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University multi-faceted representation user interests item characteristics Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
multi-faceted representation user interests item characteristics Databases and Information Systems |
spellingShingle |
multi-faceted representation user interests item characteristics Databases and Information Systems TRAN, Nhu Thuat LAUW, Hady W. Learning multi-faceted prototypical user interests |
description |
We seek to uncover the latent interest units from behavioral data to better learn user preferences under the VAE framework. Existing practices tend to ignore the multiple facets of item characteristics, which may not capture it at appropriate granularity. Moreover, current studies equate the granularity of item space to that of user interests, which we postulate is not ideal as user interests would likely map to a small subset of item space. In addition, the compositionality of user interests has received inadequate attention, preventing the modeling of interactions between explanatory factors driving a user's decision. To resolve this, we propose to align user interests with multi-faceted item characteristics. First, we involve prototype-based representation learning to discover item characteristics along multiple facets. Second, we compose user interests from uncovered item characteristics via binding mechanism, separating the granularity of user preferences from that of item space. Third, we design a dedicated bi-directional binding block, aiding the derivation of compositional user interests. On real-world datasets, the experimental results demonstrate the strong performance of our proposed method compared to a series of baselines. |
format |
text |
author |
TRAN, Nhu Thuat LAUW, Hady W. |
author_facet |
TRAN, Nhu Thuat LAUW, Hady W. |
author_sort |
TRAN, Nhu Thuat |
title |
Learning multi-faceted prototypical user interests |
title_short |
Learning multi-faceted prototypical user interests |
title_full |
Learning multi-faceted prototypical user interests |
title_fullStr |
Learning multi-faceted prototypical user interests |
title_full_unstemmed |
Learning multi-faceted prototypical user interests |
title_sort |
learning multi-faceted prototypical user interests |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2024 |
url |
https://ink.library.smu.edu.sg/sis_research/9281 https://ink.library.smu.edu.sg/context/sis_research/article/10281/viewcontent/5185_Learning_Multi_Faceted_Pr.pdf |
_version_ |
1814047929092014080 |