Alignment-enriched tuning for patch-level pre-trained document image models
Alignment between image and text has shown promising im provements on patch-level pre-trained document image mod els. However, investigating more effective or finer-grained alignment techniques during pre-training requires a large amount of computation cost and time. Thus, a question natu rally aris...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2023
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9318 https://ink.library.smu.edu.sg/context/sis_research/article/10318/viewcontent/Alignment_Enriched_pv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-10318 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-103182024-09-26T07:54:56Z Alignment-enriched tuning for patch-level pre-trained document image models WANG, Lei HE, Jiabang XU, Xing LIU, Ning LIU, Hui Alignment between image and text has shown promising im provements on patch-level pre-trained document image mod els. However, investigating more effective or finer-grained alignment techniques during pre-training requires a large amount of computation cost and time. Thus, a question natu rally arises: Could we fine-tune the pre-trained models adap tive to downstream tasks with alignment objectives and achieve comparable or better performance? In this paper, we pro pose a new model architecture with alignment-enriched tuning (dubbed AETNet) upon pre-trained document image models, to adapt downstream tasks with the joint task-specific super vised and alignment-aware contrastive objective. Specifically, weintroduce an extra visual transformer as the alignment-ware image encoder and an extra text transformer as the alignment ware text encoder before multimodal fusion. We consider alignment in the following three aspects: 1) document-level alignment by leveraging the cross-modal and intra-modal con trastive loss; 2) global-local alignment for modeling localized and structural information in document images; and 3) local level alignment for more accurate patch-level information. Ex periments on various downstream tasks show that AETNet can achieve state-of-the-art performance on various downstream tasks. Notably, AETNet consistently outperforms state-of-the art pre-trained models, such as LayoutLMv3 with fine-tuning techniques, on three different downstream tasks. Code is available at https://github.com/MAEHCM/AET. 2023-02-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/9318 https://ink.library.smu.edu.sg/context/sis_research/article/10318/viewcontent/Alignment_Enriched_pv.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Artificial Intelligence and Robotics Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Artificial Intelligence and Robotics Databases and Information Systems |
spellingShingle |
Artificial Intelligence and Robotics Databases and Information Systems WANG, Lei HE, Jiabang XU, Xing LIU, Ning LIU, Hui Alignment-enriched tuning for patch-level pre-trained document image models |
description |
Alignment between image and text has shown promising im provements on patch-level pre-trained document image mod els. However, investigating more effective or finer-grained alignment techniques during pre-training requires a large amount of computation cost and time. Thus, a question natu rally arises: Could we fine-tune the pre-trained models adap tive to downstream tasks with alignment objectives and achieve comparable or better performance? In this paper, we pro pose a new model architecture with alignment-enriched tuning (dubbed AETNet) upon pre-trained document image models, to adapt downstream tasks with the joint task-specific super vised and alignment-aware contrastive objective. Specifically, weintroduce an extra visual transformer as the alignment-ware image encoder and an extra text transformer as the alignment ware text encoder before multimodal fusion. We consider alignment in the following three aspects: 1) document-level alignment by leveraging the cross-modal and intra-modal con trastive loss; 2) global-local alignment for modeling localized and structural information in document images; and 3) local level alignment for more accurate patch-level information. Ex periments on various downstream tasks show that AETNet can achieve state-of-the-art performance on various downstream tasks. Notably, AETNet consistently outperforms state-of-the art pre-trained models, such as LayoutLMv3 with fine-tuning techniques, on three different downstream tasks. Code is available at https://github.com/MAEHCM/AET. |
format |
text |
author |
WANG, Lei HE, Jiabang XU, Xing LIU, Ning LIU, Hui |
author_facet |
WANG, Lei HE, Jiabang XU, Xing LIU, Ning LIU, Hui |
author_sort |
WANG, Lei |
title |
Alignment-enriched tuning for patch-level pre-trained document image models |
title_short |
Alignment-enriched tuning for patch-level pre-trained document image models |
title_full |
Alignment-enriched tuning for patch-level pre-trained document image models |
title_fullStr |
Alignment-enriched tuning for patch-level pre-trained document image models |
title_full_unstemmed |
Alignment-enriched tuning for patch-level pre-trained document image models |
title_sort |
alignment-enriched tuning for patch-level pre-trained document image models |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2023 |
url |
https://ink.library.smu.edu.sg/sis_research/9318 https://ink.library.smu.edu.sg/context/sis_research/article/10318/viewcontent/Alignment_Enriched_pv.pdf |
_version_ |
1814047908298752000 |