Reinforcement retrieval leveraging fine-grained feedback for fact checking news claims with Black-Box LLM

Retrieval-augmented language models have exhibited promising performance across various areas of natural language processing (NLP), including fact-critical tasks. However, due to the black-box nature of advanced large language models (LLMs) and the non-retrieval-oriented supervision signal of specif...

Full description

Saved in:
Bibliographic Details
Main Authors: ZHANG, Xuan, GAO, Wei
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/9323
https://ink.library.smu.edu.sg/context/sis_research/article/10323/viewcontent/2024.lrec_main.1209_pvoa_cc_by.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Retrieval-augmented language models have exhibited promising performance across various areas of natural language processing (NLP), including fact-critical tasks. However, due to the black-box nature of advanced large language models (LLMs) and the non-retrieval-oriented supervision signal of specific tasks, the training of retrieval model faces significant challenges under the setting of black-box LLM. We propose an approach leveraging Fine-grained Feedback with Reinforcement Retrieval (FFRR) to enhance fact-checking on news claims by using black-box LLM. FFRR adopts a two-level strategy to gather fine-grained feedback from the LLM, which serves as a reward for optimizing the retrieval policy, by rating the retrieved documents based on the non-retrieval ground truth of the task. We evaluate our model on two public datasets for real-world news claim verification, and the results demonstrate that FFRR achieves significant improvements over strong LLM-enabled and non-LLM baselines.