Deep reinforcement learning for dynamic algorithm selection: A proof-of-principle study on differential evolution
Evolutionary algorithms, such as differential evolution, excel in solving real-parameter optimization challenges. However, the effectiveness of a single algorithm varies across different problem instances, necessitating considerable efforts in algorithm selection or configuration. This article aims...
محفوظ في:
المؤلفون الرئيسيون: | GUO, Hongshu, MA, Yining, MA, Zeyuan, CHEN, Jiacheng, ZHANG, Xinglin, CAO, Zhiguang, ZHANG, Jun, GONG, Yue-Jiao |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9327 https://ink.library.smu.edu.sg/context/sis_research/article/10327/viewcontent/2403.02131v3.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Revisiting norm optimization for multi-objective black-box problems : a finite-time analysis
بواسطة: Al-Dujaili, Abdullah, وآخرون
منشور في: (2020) -
Black-box optimization by Fourier analysis and swarm intelligence
بواسطة: Lim, E.W.C., وآخرون
منشور في: (2014) -
An integrated White+Black box approach for designing and tuning stochastic local search algorithms
بواسطة: STEVEN HALIM
منشور في: (2010) -
PARTIAL RESTART STRATEGIES FOR GLOBAL OPTIMIZATION ALGORITHMS ON COMPUTATIONALLY EXPENSIVE PROBLEMS
بواسطة: LIU NANXI
منشور في: (2023) -
Variational deep logic network for joint inference of entities and relations
بواسطة: Wang, Wenya, وآخرون
منشور في: (2022)