Discovering Calendar-Based Temporal Association Rules
We study the problem of mining association rules and related time intervals, where an association rule holds either in all or some of the intervals. To restrict to meaningful time intervals, we use calendar schemas and their calendar-based patterns. A calendar schema example is (year, month, day) an...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2003
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/59 http://dx.doi.org/10.1016/s0169-023x(02)00135-0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We study the problem of mining association rules and related time intervals, where an association rule holds either in all or some of the intervals. To restrict to meaningful time intervals, we use calendar schemas and their calendar-based patterns. A calendar schema example is (year, month, day) and a calendar-based pattern within the schema is (*, 3, 15), which represents the set of time intervals each corresponding to the 15th day of a March. Our focus is finding efficient algorithms for this mining problem by extending the well-known Apriori algorithm with effective pruning techniques. We evaluate our techniques via experiments. |
---|