Robust asynchronous federated learning with time-weighted and stale model aggregation
Federated Learning (FL) ensures collaborative learning among multiple clients while maintaining data locally. However, the traditional synchronous FL solutions have lower accuracy and require more communication time in scenarios where most devices drop out during learning. Therefore, we propose an A...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2024
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9677 https://ink.library.smu.edu.sg/context/sis_research/article/10677/viewcontent/Robust_Asynchronous_Federated_Learning_With_Time_Weighted_and_Stale_Model_Aggregation.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Federated Learning (FL) ensures collaborative learning among multiple clients while maintaining data locally. However, the traditional synchronous FL solutions have lower accuracy and require more communication time in scenarios where most devices drop out during learning. Therefore, we propose an Asynchronous Federated Learning (AsyFL) scheme using time-weighted and stale model aggregation, which effectively solves the problem of poor model performance due to the heterogeneity of devices. Then, we integrate Symmetric Homomorphic Encryption (SHE) into AsyFL to propose Asynchronous Privacy-Preserving Federated Learning (Asy-PPFL), which protects the privacy of clients and achieves lightweight computing. Privacy analysis shows that Asy-PPFL is indistinguishable under Known Plaintext Attack (KPA) and convergence analysis proves the effectiveness of our schemes. A large number of experiments show that AsyFL and Asy-PPFL can achieve the highest accuracy of 58.40% and 58.26% on Cifar-10 dataset when most clients (i.e., 80%) are offline or delayed, respectively. |
---|