Interactive example-based explanations to improve health professionals’ onboarding with AI for human-AI collaborative decision making

A growing research explores the usage of AI explanations on user’s decision phases for human-AI collaborative decision-making. However, previous studies found the issues of overreliance on ‘wrong’ AI outputs. In this paper, we propose interactive example-based explanations to improve health professi...

Full description

Saved in:
Bibliographic Details
Main Authors: LEE, Min Hun, NG, Renee Bao Xuan, CHOO, Silvana Xinyi, THILARAJAH, Shamala
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2024
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/9689
https://ink.library.smu.edu.sg/context/sis_research/article/10689/viewcontent/FAIA_392_FAIA241044.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:A growing research explores the usage of AI explanations on user’s decision phases for human-AI collaborative decision-making. However, previous studies found the issues of overreliance on ‘wrong’ AI outputs. In this paper, we propose interactive example-based explanations to improve health professionals’ onboarding with AI for their better reliance on AI during AI-assisted decision-making. We implemented an AI-based decision support system that utilizes a neural network to assess the quality of post-stroke survivors’ exercises and interactive example-based explanations that systematically surface the nearest neighborhoods of a test/task sample from the training set of the AI model to assist users’ onboarding with the AI model. To investigate the effect of interactive example-based explanations, we conducted a study with domain experts, health professionals to evaluate their performance and reliance on AI. Our interactive example-based explanations during onboarding assisted health professionals in having a better reliance on AI and making a higher ratio of making ‘right’ decisions and a lower ratio of ‘wrong’ decisions than providing only feature-based explanations during the decision-support phase. Our study discusses new challenges of assisting user’s onboarding with AI for human-AI collaborative decision-making.