VrdONE : One-stage video visual relation detection

Video Visual Relation Detection (VidVRD) focuses on understanding how entities interact over time and space in videos, a key step for gaining deeper insights into video scenes beyond basic visual tasks. Traditional methods for VidVRD, challenged by its complexity, typically split the task into two p...

Full description

Saved in:
Bibliographic Details
Main Authors: JIANG, Xinjie, ZHENG, Chenxi, XU, Xuemiao, LIU, Bangzhen, ZHENG, Weiying, ZHANG, Huaidong, HE, Shengfeng
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2024
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/9802
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Video Visual Relation Detection (VidVRD) focuses on understanding how entities interact over time and space in videos, a key step for gaining deeper insights into video scenes beyond basic visual tasks. Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation categories are present and another for determining their temporal boundaries. This split overlooks the inherent connection between these elements. Addressing the need to recognize entity pairs' spatiotemporal interactions across a range of durations, we propose VrdONE, a streamlined yet efficacious one-stage model. VrdONE combines the features of subjects and objects, turning predicate detection into 1D instance segmentation on their combined representations. This setup allows for both relation category identification and binary mask generation in one go, eliminating the need for extra steps like proposal generation or post-processing. VrdONE facilitates the interaction of features across various frames, adeptly capturing both short-lived and enduring relations. Additionally, we introduce the Subject-Object Synergy (SOS) module, enhancing how subjects and objects perceive each other before combining. VrdONE achieves state-of-the-art performances on the VidOR benchmark and ImageNet-VidVRD, showcasing its superior capability in discerning relations across different temporal scales.