Neural network based scene text recognition [US Patent US 2022/0237403 A1]

A system uses a neural network based model to perform scene text recognition. The system achieves high accuracy of prediction of text from scenes based on a neural network architecture that uses double attention mechanism. The neural network based model includes a convolutional neural network compon...

全面介紹

Saved in:
書目詳細資料
Main Authors: ZHOU, Pan, TANG, Peng, XU, Ran, HOI, Steven Chu Hong
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2022
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/9808
https://ink.library.smu.edu.sg/context/sis_research/article/10808/viewcontent/2024_US_Patent_OCR.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:A system uses a neural network based model to perform scene text recognition. The system achieves high accuracy of prediction of text from scenes based on a neural network architecture that uses double attention mechanism. The neural network based model includes a convolutional neural network component that outputs a set of visual features and an attention extractor neural network component that determines attention scores based on the visual features. The visual features and the attention scores are combined to generate mixed features that are provided as input to a character recognizer component that determines a second attention score and recognizes the characters based on the second attention score. The system trains the neural network based model by adjusting the neural network parameters to minimize a multi-class gradient harmonizing mechanism (GHM) loss. The multi-class GHM loss varies based on a level of difficulty of the sample.