Topic modeling on document networks with Dirichlet Optimal Transport Barycenter
Text documents are often interconnected in a network structure, e.g., academic papers via citations, Web pages via hyperlinks. On the one hand, though Graph Neural Networks (GNNs) have shown promising ability to derive effective embeddings for such networked documents, they do not assume a latent to...
Saved in:
Main Authors: | ZHANG, Ce, LAUW, Hady Wirawan |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2024
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/9839 https://ink.library.smu.edu.sg/context/sis_research/article/10839/viewcontent/tkde23barycenter.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Topic modeling on document networks with Dirichlet Optimal Transport Barycenter (Extended Abstract)
由: ZHANG, Ce, et al.
出版: (2024) -
Hyperbolic graph topic modeling network with continuously updated topic tree
由: ZHANG, Ce, et al.
出版: (2023) -
Variational graph author topic modeling
由: ZHANG, Ce, et al.
出版: (2022) -
Document graph representation learning
由: ZHANG, Ce
出版: (2023) -
Text-attributed graph representation learning : Methods, applications, and challenges
由: ZHANG, Ce, et al.
出版: (2024)