Privacy-preserving Byzantine-robust federated learning via blockchain systems
Federated learning enables clients to train a machine learning model jointly without sharing their local data. However, due to the centrality of federated learning framework and the untrustworthiness of clients, traditional federated learning solutions are vulnerable to poisoning attacks from malici...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2022
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/10114 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-11114 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-111142025-02-18T06:24:03Z Privacy-preserving Byzantine-robust federated learning via blockchain systems MIAO, Yinbin LIU, Ziteng LI, Hongwei CHOO, Kim-Kwang Raymond DENG, Robert H. Federated learning enables clients to train a machine learning model jointly without sharing their local data. However, due to the centrality of federated learning framework and the untrustworthiness of clients, traditional federated learning solutions are vulnerable to poisoning attacks from malicious clients and servers. In this paper, we aim to mitigate the impact of the central server and malicious clients by designing a Privacy-preserving Byzantine-robust Federated Learning (PBFL) scheme based on blockchain. Specifically, we use cosine similarity to judge the malicious gradients uploaded by malicious clients. Then, we adopt fully homomorphic encryption to provide secure aggregation. Finally, we use blockchain system to facilitate transparent processes and implementation of regulations. Our formal analysis proves that our scheme achieves convergence and provides privacy protection. Our extensive experiments on different datasets demonstrate that our scheme is robust and efficient. Even if the root dataset is small, our scheme can achieve the same efficiency as FedSGD. 2022-08-01T07:00:00Z text https://ink.library.smu.edu.sg/sis_research/10114 info:doi/10.1109/TIFS.2022.3196274 Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Federated learning poisoning attacks fully homomorphic encryption blockchain Information Security |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Federated learning poisoning attacks fully homomorphic encryption blockchain Information Security |
spellingShingle |
Federated learning poisoning attacks fully homomorphic encryption blockchain Information Security MIAO, Yinbin LIU, Ziteng LI, Hongwei CHOO, Kim-Kwang Raymond DENG, Robert H. Privacy-preserving Byzantine-robust federated learning via blockchain systems |
description |
Federated learning enables clients to train a machine learning model jointly without sharing their local data. However, due to the centrality of federated learning framework and the untrustworthiness of clients, traditional federated learning solutions are vulnerable to poisoning attacks from malicious clients and servers. In this paper, we aim to mitigate the impact of the central server and malicious clients by designing a Privacy-preserving Byzantine-robust Federated Learning (PBFL) scheme based on blockchain. Specifically, we use cosine similarity to judge the malicious gradients uploaded by malicious clients. Then, we adopt fully homomorphic encryption to provide secure aggregation. Finally, we use blockchain system to facilitate transparent processes and implementation of regulations. Our formal analysis proves that our scheme achieves convergence and provides privacy protection. Our extensive experiments on different datasets demonstrate that our scheme is robust and efficient. Even if the root dataset is small, our scheme can achieve the same efficiency as FedSGD. |
format |
text |
author |
MIAO, Yinbin LIU, Ziteng LI, Hongwei CHOO, Kim-Kwang Raymond DENG, Robert H. |
author_facet |
MIAO, Yinbin LIU, Ziteng LI, Hongwei CHOO, Kim-Kwang Raymond DENG, Robert H. |
author_sort |
MIAO, Yinbin |
title |
Privacy-preserving Byzantine-robust federated learning via blockchain systems |
title_short |
Privacy-preserving Byzantine-robust federated learning via blockchain systems |
title_full |
Privacy-preserving Byzantine-robust federated learning via blockchain systems |
title_fullStr |
Privacy-preserving Byzantine-robust federated learning via blockchain systems |
title_full_unstemmed |
Privacy-preserving Byzantine-robust federated learning via blockchain systems |
title_sort |
privacy-preserving byzantine-robust federated learning via blockchain systems |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2022 |
url |
https://ink.library.smu.edu.sg/sis_research/10114 |
_version_ |
1827070770583437312 |