Towards robust models of code via energy-based learning on auxiliary datasets
Existing approaches to improving the robustness of source code models concentrate on recognizing adversarial samples rather than valid samples that fall outside of a given distribution, which we refer to as out-of-distribution (OOD) samples. To this end, we propose to use an auxiliary dataset (out-o...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2022
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/10117 https://ink.library.smu.edu.sg/context/sis_research/article/11117/viewcontent/RobustModelsCode_pv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Existing approaches to improving the robustness of source code models concentrate on recognizing adversarial samples rather than valid samples that fall outside of a given distribution, which we refer to as out-of-distribution (OOD) samples. To this end, we propose to use an auxiliary dataset (out-of-distribution) such that, when trained together with the main dataset, they will enhance the model’s robustness. We adapt energy-bounded learning objective function to assign a higher score to in-distribution samples and a lower score to out-of-distribution samples in order to incorporate such out-of-distribution samples into the training process of source code models. In terms of OOD detection and adversarial samples detection, our evaluation results demonstrate a greater robustness for existing source code models to become more accurate at recognizing OOD data while being more resistant to adversarial attacks at the same time. |
---|