Privacy-Preserving Similarity-Based Text Retrieval
Users of online services are increasingly wary that their activities could disclose confidential information on their business or personal activities. It would be desirable for an online document service to perform text retrieval for users, while protecting the privacy of their activities. In this a...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2010
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/220 https://ink.library.smu.edu.sg/context/sis_research/article/1219/viewcontent/Privacy_Preserving_Similarity_Based_Text_Retrieval__edited_.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Users of online services are increasingly wary that their activities could disclose confidential information on their business or personal activities. It would be desirable for an online document service to perform text retrieval for users, while protecting the privacy of their activities. In this article, we introduce a privacy-preserving, similarity-based text retrieval scheme that (a) prevents the server from accurately reconstructing the term composition of queries and documents, and (b) anonymizes the search results from unauthorized observers. At the same time, our scheme preserves the relevance-ranking of the search server, and enables accounting of the number of documents that each user opens. The effectiveness of the scheme is verified empirically with two real text corpora. |
---|