Deriving Private Information from Perturbed Data using IQR Based Approach
Several randomized techniques have been proposed for privacy preserving data mining of continuous data. These approaches generally attempt to hide the sensitive data by randomly modifying the data values using some additive noise and aim to reconstruct the original distribution closely at an aggrega...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2006
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/321 http://dx.doi.org/10.1109/ICDEW.2006.47 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
الملخص: | Several randomized techniques have been proposed for privacy preserving data mining of continuous data. These approaches generally attempt to hide the sensitive data by randomly modifying the data values using some additive noise and aim to reconstruct the original distribution closely at an aggregate level. However, one challenge here is whether the reconstructed distribution can be exploited by attackers or snoopers to derive sensitive individual data. This paper presents one simple attack using Inter-Quantile Range on reconstructed distribution. The experimental results show that current random perturbation-based privacy preserving data mining techniques may need a careful scrutiny in order to prevent privacy breaches through this model based inference. |
---|