Event detection with common user interests
In this paper, we aim at detecting events of common user interests from huge volume of user-generated content. The degree of interest from common users in an event is evidenced by a significant surge of event-related queries issued to search for documents (e.g., news articles, blog posts) relevant t...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2008
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/331 https://ink.library.smu.edu.sg/context/sis_research/article/1330/viewcontent/p1_hu.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | In this paper, we aim at detecting events of common user interests from huge volume of user-generated content. The degree of interest from common users in an event is evidenced by a significant surge of event-related queries issued to search for documents (e.g., news articles, blog posts) relevant to the event. Taking the stream of queries from users and the stream of documents as input, our proposed framework seamlessly integrates the two streams into a single stream of query profiles. A query profile is a set of documents matching a query at a given time. With the single stream of query profiles, the well-studied techniques in event detection (e.g., incremental clustering) could be easily applied. In our experiments using real data collected from Blog and News search engines respectively, the proposed technique achieved very high event detection accuracy. |
---|