On Mining Rating Dependencies in Online Collaborative Rating Networks
The trend of social information processing sees e-commerce and social web applications increasingly relying on user-generated content, such as rating, to determine the quality of objects and to generate recommendations for users. In a rating system, a set of reviewers assign to a set of objects diff...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2009
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/373 https://ink.library.smu.edu.sg/context/sis_research/article/1372/viewcontent/pakdd09.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-1372 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-13722018-12-07T08:39:46Z On Mining Rating Dependencies in Online Collaborative Rating Networks LAUW, Hady W. LIM, Ee Peng WANG, Ke The trend of social information processing sees e-commerce and social web applications increasingly relying on user-generated content, such as rating, to determine the quality of objects and to generate recommendations for users. In a rating system, a set of reviewers assign to a set of objects different types of scores based on specific evaluation criteria. In this paper, we seek to determine, for each reviewer and for each object, the dependency between scores on any two given criteria. A reviewer is said to have high dependency between a pair of criteria when his or her rating scores on objects based on the two criteria exhibit strong correlation. On the other hand, an object is said to have high dependency between a pair of criteria when the rating scores it receives on the two criteria exhibit strong correlation. Knowing reviewer dependency and object dependency is useful in various applications including recommendation, customization, and score moderation. We propose a model, called Interrelated Dependency, which determines both types of dependency simultaneously, taking into account the interrelatedness between the two types of dependency. We verify the efficacy of this model through experiments on real-life data. 2009-05-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/373 info:doi/10.1007/978-3-642-01307-2_113 https://ink.library.smu.edu.sg/context/sis_research/article/1372/viewcontent/pakdd09.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Databases and Information Systems Numerical Analysis and Scientific Computing |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Databases and Information Systems Numerical Analysis and Scientific Computing |
spellingShingle |
Databases and Information Systems Numerical Analysis and Scientific Computing LAUW, Hady W. LIM, Ee Peng WANG, Ke On Mining Rating Dependencies in Online Collaborative Rating Networks |
description |
The trend of social information processing sees e-commerce and social web applications increasingly relying on user-generated content, such as rating, to determine the quality of objects and to generate recommendations for users. In a rating system, a set of reviewers assign to a set of objects different types of scores based on specific evaluation criteria. In this paper, we seek to determine, for each reviewer and for each object, the dependency between scores on any two given criteria. A reviewer is said to have high dependency between a pair of criteria when his or her rating scores on objects based on the two criteria exhibit strong correlation. On the other hand, an object is said to have high dependency between a pair of criteria when the rating scores it receives on the two criteria exhibit strong correlation. Knowing reviewer dependency and object dependency is useful in various applications including recommendation, customization, and score moderation. We propose a model, called Interrelated Dependency, which determines both types of dependency simultaneously, taking into account the interrelatedness between the two types of dependency. We verify the efficacy of this model through experiments on real-life data. |
format |
text |
author |
LAUW, Hady W. LIM, Ee Peng WANG, Ke |
author_facet |
LAUW, Hady W. LIM, Ee Peng WANG, Ke |
author_sort |
LAUW, Hady W. |
title |
On Mining Rating Dependencies in Online Collaborative Rating Networks |
title_short |
On Mining Rating Dependencies in Online Collaborative Rating Networks |
title_full |
On Mining Rating Dependencies in Online Collaborative Rating Networks |
title_fullStr |
On Mining Rating Dependencies in Online Collaborative Rating Networks |
title_full_unstemmed |
On Mining Rating Dependencies in Online Collaborative Rating Networks |
title_sort |
on mining rating dependencies in online collaborative rating networks |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2009 |
url |
https://ink.library.smu.edu.sg/sis_research/373 https://ink.library.smu.edu.sg/context/sis_research/article/1372/viewcontent/pakdd09.pdf |
_version_ |
1770570399772311552 |