Parameter Estimation in Semi-Random Decision Tree Ensembling on Streaming Data
The induction error in random tree ensembling results mainly from the strength of decision trees and the dependency between base classifiers. In order to reduce the errors due to both factors, a Semi-Random Decision Tree Ensembling (SRDTE) for mining streaming data is proposed based on our previous...
Saved in:
Main Authors: | LI, Peipei, LIANG, Qianhui (Althea), WU, Xindong, Hu, X. |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2009
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/454 http://dx.doi.org/10.1007/978-3-642-01307-2_35 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Concept Drifting Detection on Noisy Streaming Data in Random Ensemble Decision Trees
由: LI, Peipei, et al.
出版: (2009) -
Random forest of mixed decision trees and minority condensation decision trees for class imbalanced problem
由: Suvaporn Homjandee
出版: (2022) -
Disseminating streaming data in a dynamic environment: An adaptive and cost-based approach
由: Zhou, Y., et al.
出版: (2013) -
Optimal direct sum results for deterministic and randomized decision tree complexity
由: Jain, R., et al.
出版: (2013) -
Short redactable signatures using random trees
由: Chang, E.-C., et al.
出版: (2013)