Compositemap: A Novel Music Similarity Measure for Personalized Multimodal Music Search

How to measure and model the similarity between different music items is one of the most fundamental yet challenging research problems in music information retrieval. This paper demonstrates a novel multimodal and adaptive music similarity measure (CompositeMap) with its application in a personalize...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: ZHANG, Bingjun, XIANG, Qiaoliang, WANG, Ye, SHEN, Jialie
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2009
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/518
http://dx.doi.org/10.1145/1631272.1631474
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:How to measure and model the similarity between different music items is one of the most fundamental yet challenging research problems in music information retrieval. This paper demonstrates a novel multimodal and adaptive music similarity measure (CompositeMap) with its application in a personalized multimodal music search system. CompositeMap can effectively combine music properties from different aspects into compact signatures via supervised learning, which lays the foundation for effective and efficient music search. In addition, an incremental Locality Sensitive Hashing algorithm is developed to support more efficient search processes. Experimental results based on two large music collections reveal various advantages in effectiveness, efficiency, adaptiveness, and scalability of the proposed music similarity measure and the music search system.