Autoconfiguration, Registration and Mobility Management for Pervasive Computing
In the vision of pervasive computing, users will exchange information and control their environments from anywhere using various wireline/wireless networks and computing devices. We believe that current protocols, such as DHCP, PPP, and Mobile IP, must be enhanced to support pervasive network access...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2001
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/732 https://ink.library.smu.edu.sg/context/sis_research/article/1731/viewcontent/AutoconfigurationRegistrationPervasive_2001.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | In the vision of pervasive computing, users will exchange information and control their environments from anywhere using various wireline/wireless networks and computing devices. We believe that current protocols, such as DHCP, PPP, and Mobile IP, must be enhanced to support pervasive network access. In particular, this article identifies three fundamental functions: autoconfiguration, registration, and mobility management, that need such enhancements. Realizing that the IP autoconfiguration capabilities must be extended to configure routers and large dynamic networks, we first describe our autoconfiguration solution based on the dynamic configuration and distribution protocol (DCDP). Second, we discuss why providing user-specific services over a common infrastructure needs a uniform registration protocol, independent of the mobility and configuration mechanisms. We present an initial version of the basic user registration protocol (BURP), which provides secure client-network registration and interfaces to AAA protocols such as Diameter. Finally, we discuss the dynamic mobility agent (DMA) architecture, which provides a hierarchical and scalable mobility management framework. The DMA approach allows individual users to customize their own mobility-related features, such as paging, fast handoffs, and QoS support, over a common access infrastructure and to select multiple global binding protocols as appropriate |
---|