New Efficient MDS Array Codes for RAID Part I: Reed-Solomon-like Codes for Tolerating Three Disk Failures

This paper presents a class of binary maximum distance separable (MDS) array codes for tolerating disk failures in redundant arrays of inexpensive disks (RAID) architecture based on circular permutation matrices. The size of the information part is m×n, the size of the parity-check part is m×3, and...

Full description

Saved in:
Bibliographic Details
Main Authors: FENG, Gui-Liang, DENG, Robert H., Bao, Feng, SHEN, Jia-Chen
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2005
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/1169
https://ink.library.smu.edu.sg/context/sis_research/article/2168/viewcontent/auto_convert.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:This paper presents a class of binary maximum distance separable (MDS) array codes for tolerating disk failures in redundant arrays of inexpensive disks (RAID) architecture based on circular permutation matrices. The size of the information part is m×n, the size of the parity-check part is m×3, and the minimum distance is 4, where n is the number of information disks, the number of parity-check disks is 3, and (m+1) is a prime integer. In practical applications, m can be very large and n is from 20 to 50. The code rate is R=n/(n+3). These codes can be used for tolerating three disk failures. The encoding and decoding of the Reed-Solomon-like codes are very fast. There need to be 3mn XOR operations for encoding and (3mn+9(m+1)) XOR operations for decoding.