Discovering and Exploiting Causal Dependencies for Robust Mobile Context-Aware Recommenders

Acquisition of context poses unique challenges to mobile context-aware recommender systems. The limited resources in these systems make minimizing their context acquisition a practical need, and the uncertainty in the mobile environment makes missing and erroneous context inputs a major concern. In...

Full description

Saved in:
Bibliographic Details
Main Authors: YAP, Ghim-Eng, TAN, Ah-Hwee, PANG, Hwee Hwa
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2007
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/1210
https://ink.library.smu.edu.sg/context/sis_research/article/2209/viewcontent/Discovering_and_Exploiting_Causal_Dependencies_for_Robust_Mobile_Context_Aware_Recommenders__edited_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Acquisition of context poses unique challenges to mobile context-aware recommender systems. The limited resources in these systems make minimizing their context acquisition a practical need, and the uncertainty in the mobile environment makes missing and erroneous context inputs a major concern. In this paper, we propose an approach based on Bayesian networks (BNs) for building recommender systems that minimize context acquisition. Our learning approach iteratively trims the BN-based context model until it contains only the minimal set of context parameters that are important to a user. In addition, we show that a two-tiered context model can effectively capture the causal dependencies among context parameters, enabling a recommender system to compensate for missing and erroneous context inputs. We have validated our proposed techniques on a restaurant recommendation data set and a Web page recommendation data set. In both benchmark problems, the minimal sets of context can be reliably discovered for the specific users. Furthermore, the learned Bayesian network consistently outperforms the J4.8 decision tree in overcoming both missing and erroneous context inputs to generate significantly more accurate predictions.