A Two-Stage Approach to Domain Adaptation for Statistical Classifiers

In this paper, we consider the problem of adapting statistical classifiers trained from some source domains where labeled examples are available to a target domain where no labeled example is available. One characteristic of such a domain adaptation problem is that the examples in the source domains...

Full description

Saved in:
Bibliographic Details
Main Authors: JIANG, Jing, ZHAI, ChengXiang
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2007
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/1252
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In this paper, we consider the problem of adapting statistical classifiers trained from some source domains where labeled examples are available to a target domain where no labeled example is available. One characteristic of such a domain adaptation problem is that the examples in the source domains and the target domain are known to follow different distributions. Thus a regular classification method would tend to overfit the source domains. We present a two-stage approach to domain adaptation, where at the first