A Two-Stage Approach to Domain Adaptation for Statistical Classifiers

In this paper, we consider the problem of adapting statistical classifiers trained from some source domains where labeled examples are available to a target domain where no labeled example is available. One characteristic of such a domain adaptation problem is that the examples in the source domains...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: JIANG, Jing, ZHAI, ChengXiang
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2007
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/1252
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In this paper, we consider the problem of adapting statistical classifiers trained from some source domains where labeled examples are available to a target domain where no labeled example is available. One characteristic of such a domain adaptation problem is that the examples in the source domains and the target domain are known to follow different distributions. Thus a regular classification method would tend to overfit the source domains. We present a two-stage approach to domain adaptation, where at the first