Generating Aspect-oriented Multi-document Summarization with Event-Aspect Model
In this paper, we propose a novel approach to automatic generation of aspect-oriented summaries from multiple documents. We first develop an event-aspect LDA model to cluster sentences into aspects. We then use extended LexRank algorithm to rank the sentences in each cluster. We use Integer Linear P...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2011
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1378 https://ink.library.smu.edu.sg/context/sis_research/article/2377/viewcontent/D11_1105.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | In this paper, we propose a novel approach to automatic generation of aspect-oriented summaries from multiple documents. We first develop an event-aspect LDA model to cluster sentences into aspects. We then use extended LexRank algorithm to rank the sentences in each cluster. We use Integer Linear Programming for sentence selection. Key features of our method include automatic grouping of semantically related sentences and sentence ranking based on extension of random walk model. Also, we implement a new sentence compression algorithm which use dependency tree instead of parser tree. We compare our method with four baseline methods. Quantitative evaluation based on Rouge metric demonstrates the effectiveness and advantages of our method. |
---|